Search results for "Direct Numerical Simulation"
showing 10 items of 25 documents
DIRECT NUMERICAL SIMULATION OF MOTION OF FERROMAGNETIC PARTICLES IN MAGNETORHEOLOGICAL SUSPENSION
2008
ABSTRACT Results simulation of magnetorheological suspension at particle level are reported. The present approach accounts for a better description of hydrodynamic interaction between close spheres. Development of lamellar structures similar to those obtained by other researchers in Poiseuille flow is observed in shear flow. Studies of single layer lamellar structures reveal presence of short chains and more complex aggregates.
A Comparison of Direct Numerical Simulation and Turbulence Models for Liquid Metal Free Convection in Volumetrically Heated Enclosures
1999
A dynamic subgrid-scale tensorial eddy viscosity model
1999
In the Navier-Stokes equations the removal of the turbulent fluctuating velocities with a frequency above a certain fixed threshold, employed in the Large Eddy Simulation (LES), causes the appearance of a turbulent stress tensor that requires a number of closure assumptions. In this paper insufficiencies are demonstrated for those closure models which are based on a scalar eddy viscosity coefficient. A new model, based on a tensorial eddy viscosity, is therefore proposed; it employs the Germano identity [1] and allows dynamical evaluation of the single required input coefficient. The tensorial expression for the eddy viscosity is deduced by removing the widely used scalar assumption of the …
Turbulence structure and budgets in curved pipes
2013
Abstract Turbulent flow in curved pipes was investigated by Direct Numerical Simulation. Three curvatures δ (pipe radius a /curvature radius c ) were examined: δ = 0 (straight pipe), simulated for validation and comparison purposes; δ = 0.1; and δ = 0.3. The friction velocity Reynolds number (based on the pipe radius a ) was 500 in all cases, yielding bulk Reynolds numbers of ∼17,000, ∼15,000 and ∼12,000 for δ = 0, 0.1 and 0.3, respectively. The computational domain was ten pipe radii in length and was resolved by up to 20 × 10 6 hexahedral finite volumes. The time step was chosen equal to a wall time unit; 1 Large Eddy TurnOver Time (LETOT) was thus resolved by 500 time steps and simul…
Global Linear Stability Analysis of the Flow Around a Superhydrophobic Circular Cylinder
2016
International audience; Over the last few years, superhydrophobic (SH) surfaces have been receiving an increasing attention in many scientific areas by virtue of their ability to enhance flow slip past solid walls and reduce the skin-friction drag. In the present study, a global linear-stability analysis is employed to investigate the influence of the SH-induced slip velocity on the primary instability of the 2D flow past a circular cylinder. The flow regions playing the role of 'wavemaker' are identified by considering the structural sensitivity of the unstable mode, thus highlighting the effect of slip on the global instability of the considered flow. In addition, a sensitivity analysis t…
Diffusion in active magnetic colloids
2013
Abstract Properties of active colloids of circle swimmers are reviewed. As a particular example of active magnetic colloids the magnetotactic bacteria under the action of a rotating magnetic field is considered. The relation for a diffusion coefficient due to the random switching of the direction of rotation of their rotary motors is derived on the basis of the master equation. The obtained relation is confirmed by the direct numerical simulation of random trajectory of a magnetotactic bacterium under the action of the Poisson type internal noise due to the random switching of rotary motors. The results obtained are in qualitative and quantitative agreement with the available experimental r…
Digital rock physics, chemistry, and biology: challenges and prospects of pore-scale modelling approach
2021
Abstract Conventional and unconventional hydrocarbon rocks have complicated pore structures with heterogeneities distributed over various length scales (from nanometre to centimetre or even larger scales). Effective characterization of the properties of such rocks based on their digital twins is a challenging task. Digital rock physics (DRP) can be used to quantify the structural and morphological parameters of rocks directly and predict flow transport properties at the pore scale. Digital rock chemistry (DRC) or biology (DRB) applies when the changes in pore structures are due to interaction with solutes or microbial activities. Fluid–rock interactions or microbial activities complicate fl…
Direct numerical simulation of turbulent heat transfer in curved pipes
2012
Fully developed turbulent convective heat transfer in curved pipes was investigated by Direct Numerical Simulation for a friction velocity Reynolds number of 500, yielding bulk Reynolds numbers between 12 630 and ~17 350 according to the curvature (pipe radius/curvature radius). Three different curvatures were compared, i.e. 0 (straight pipe), 0.1 and 0.3. The Prandtl number was 0.86. The computational domain was a tract of pipe 5 diameters in length. A finite volume method was used, with multiblock structured grids of ~5.3x10E6 hexahedral volumes. Simulations were typically protracted for 20 LETOT’s starting from coarse-grid results. Results were post-processed to compute first and second …
On the influence of curvature and torsion on turbulence in helically coiled pipes
2014
Turbulent flow and heat transfer in helically coiled pipes at Ret=400 was investigated by DNS using finite volume grids with up to 2.36×10^7 nodes. Two curvatures (0.1 and 0.3) and two torsions (0 and 0.3) were considered. The flow was fully developed hydrodynamically and thermally. The central discretization scheme was adopted for diffusion and advection terms, and the second order backward Euler scheme for time advancement. The grid spacing in wall units was ~3 radially, 7.5 circumferentially and 20 axially. The time step was equal to one viscous wall unit and simulations were typically protracted for 8000 time steps, the last 4000 of which were used to compute statistics. The results sho…
Investigation of heat transfer in spacer-filled channels by experiments and direct numerical simulations
2016
Abstract The analysis of flow fields and heat or mass transfer phenomena is of great importance in the optimum design of spacer-filled channel geometries for a variety of membrane-based processes. In the present work, models of spacer-filled channels often adopted in Membrane Distillation are simultaneously investigated by experiments and Computational Fluid Dynamics (CFD). Experiments rely on a non-intrusive technique, based on the use of Thermochromic Liquid Crystals (TLC) and digital image processing, and provide the local distribution of the convective heat transfer coefficient on a thermally active wall. CFD relies on steady-state (laminar flow) simulations in the lower end of the Reyn…